Volume 7, Issue 2, April 2019, Page: 17-32
Sm-Nd and Rb-Sr Datings, Petrogenesis and Thermometry of the Ngovayang Area (South-West Cameroon): Isotopic Data Insight of Recycling Crust and Convergence Orogen
Ndong Bidzang Francois, Ore Processing Laboratory, Institute for Geological and Mining Research, Yaounde, Cameroon
Ntomba Sylvestre Martial, Centre for Geological and Mining Research, Institute for Geological and Mining Research, Yaounde, Cameroon
Ntomb Yvan Demonstel, Centre for Geological and Mining Research, Institute for Geological and Mining Research, Yaounde, Cameroon
Messi Ottou Eric Jose, Department of Earth Sciences, University of Yaounde I, Yaounde, Cameroon
Magnekou Takamte Rufine Christelle, Department of Earth Sciences, University of Yaounde I, Yaounde, Cameroon
Received: Aug. 5, 2019;       Accepted: Sep. 4, 2019;       Published: Sep. 19, 2019
DOI: 10.11648/j.sr.20190702.12      View  75      Downloads  11
Abstract
The Ngovayang trondhjemitic gneisses belong to the Nyong Complex at the Northwest boundary of the Ntem Complex. A combined study of whole-rock major, trace elements and isotopic data, Sm-Nd and Rb-Sr indicate that trondhjemitic gneisses are peraluminous and range from weakly I-type to S-type with nearly constant A/CNK values between 1.04 and 1.24. Their I- and S- type characters suggest that juvenile materials have been partially remobilized or recycled. These trondhjemitic gneisses have slightly to moderate MgO, Cr and Ni contents, ISr (0.703677 - 0.741911) and low εNd(t) (from -16.48 to -10.6) values. Such geochemical features suggest a small mantle-source contribution, coupled with assimilation of some upper and lower crustal materials and indicate the implication of old crust probably with both Archean and Early eburnean origin (2597 - 2318 Ma). They also exhibit geochemical features typical of calc-alkaline, crustal contaminated calcalkaline rocks, volcanic arc and trondhjemitic nature. These results show that old crust has recycled and trondhjemitic gneisses are linked to convergent geodynamic system. The petrogenetic diagrams of AFM vs CFM, MgO vs SiO2 and Rb/Ba vs Rb/Sr and lower K2O/Na2O ratio values (0.38-0.51), indicate that the magmatic source materials are mainly composed of plagioclase-rich sources such as metagreywackes - metabasic mixtures, metagreywackes and metabasics and basalt or igneous rocks. These sources materials occurring in the melt originated from both slab melting and assimilation of upper and lower crust at ca. 732.4 - 928.7°C and at 2597 - 2318 Ma. This study shows that Archean crust may have a North-West extension beyond the actual boundary with Nyong Complex.
Keywords
Nyong Complex, Ngovayang Trondhjemitic Gneisses, Sm-Nd and Rb-Sr Datings, Thermometry, Convergent Geodynamic System
To cite this article
Ndong Bidzang Francois, Ntomba Sylvestre Martial, Ntomb Yvan Demonstel, Messi Ottou Eric Jose, Magnekou Takamte Rufine Christelle, Sm-Nd and Rb-Sr Datings, Petrogenesis and Thermometry of the Ngovayang Area (South-West Cameroon): Isotopic Data Insight of Recycling Crust and Convergence Orogen, Science Research. Vol. 7, No. 2, 2019, pp. 17-32. doi: 10.11648/j.sr.20190702.12
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Lerouge, C., Cocherie, A., Toteu, S. F., Penaye, J., Milesi, J. P., Tchameni, R., Nsifa, N. E., Fanning, C. M., Deloule, E., (2006). SHRIMP U/Pb zircon age evidence for paleoproterozoic sedimentation and 2.05 Ga syntectonic plutonism in the Nyong Group, South-western Cameroon: consequences for the eburnean-transamazonian belt of NE Brasil and central Africa. Journal of African Earth Sciences 44, 413-427.
[2]
Loose, D., and V. Schenk, (2018). 2.09 Ga old eclogites in the eburnean-transamazonian orogeny of southern Cameroon: Significance for Paleoproterozoic plate tectonics. Precambrian Research. 304 (1-11).
[3]
Nédélec, A., Minyem, D., Barbey, P., (1993). High P High T anatexis of Archean tonalitic grey gneisses: the Eséka migmatites, Cameroon. Precambrian Research 62, 191 205.
[4]
Toteu, S. F., Van Schmus, W. R., Penaye, J., Nyobe, J. B., (1994). U-Pb and Sm-Nd Evidence for Eburnian and Pan-African high-grade metamorphism in cratonic rocks of southern Cameroon. Precambrian Research 67, 321-347.
[5]
Penaye, J., Toteu, S. F., Van Schmus, W. R., Nzenti, J. P., (1993). U–Pb and Sm–Nd preliminary geochronologic data on the Yaounde´ series, Cameroon: re-interpre´tation of the granulitic rocks as the suture of a collision in the ‘‘Centrafrican’’ belt. Comptes Rendus Academic Sciences Paris 317, 789–794.
[6]
Sylvester, P. J. (1989). Post-collisional alkaline granites. Journal of geosciences. Vol. 97. 261-280.
[7]
Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., Paterson, B. A., Woodhead, J. D., Hergt, J. M., Gray, C. M., Whitehouse, M., J., (2007). Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Sciences. Vol 315: 980-983.
[8]
Wu, F. Y., Jahn, B. M., Wilde, S. A., Lo, C. H., Yui, T., F., Lin, Q., Ge, W. C., Sun, D., Y., (2003). Highly fractionated I-type granites in NE China (I): geochronology and petrogenesis. Lithos. Vol. 66, 241-273.
[9]
Carvalho, P. C. S., Neiva, A., M., R., Silva, M., M., V., G., Corfu, F., (2012). A unique sequential melting mechanism for the generation of anatectic granitic rocks from the Penafiel area, northern Portugal. Lithos. Vol. 155, 110-124.
[10]
Finger, F., Roberts, M., P., Haunschmid, B., Schermaier, A., Steyrer, H., P., (1997). Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations. Mineralogy and Petrology. Vol 61, 67-96.
[11]
Collins, W., J., Richards, S. W., (2008). Geodynamic significance of S-type granites in Circum-Pacific orogens. Geology. Vol. 36, 559-562.
[12]
Cai, K., D., Sun, M., Yuan, C., Zhao, G., C., Xiao, W., J., Long, X., P., Wu, F., Y., (2011). Geochronology, Petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai, NW China. Lithos. Vol 127, 261-281.
[13]
Chen, Y., X., Song, S., G., Niu, Y. L., Wei, C., J., (2014). Melting of continental crust during subduction initiation: a case study from the Chaidanno peraluminous granite in the North Qilian suture zone. Geochimica et Cosmochimica Acta. Vol. 132, 311-336.
[14]
Feybesse, J. L., Johan, V., Triboulet, C., Guerrot, C., Mayaga-Mikolo, F., Bouchot, V., Eko N’dong, J., (1998). The West Central African Belt: amodel of 2.0 Ga accretion ant two-phase orogenic evolution. Precambrian Research 87, 161-216.
[15]
Barbosa, J., S., F., Sabate, P., (2004). Archean and Paleoproterozoic crust of the São Francisco craton, Bahia, Brazil: geodynamic features. Precambrian Research. Vol. 133, 1-27.
[16]
Owona, S. Mvondo Ondoa, J. Ratschbacher, L. Mbola Ndzana, S. P. Tchoua, M. F. & Ekodeck, G. E. (2011). The geometry of the Archean, Paleo- and Neoproterozoic tectonics in the Southwest Cameroon. Comptes Rendus of Geosciences, 343: 312 322.
[17]
Boniface, N. Schenk, V. and Appel, P. (2012). Paleoproterozoic eclogites of MORB-type chemistry and three. Proterozoic orogenic cycles in the Ubendian Belt (Tanzania): Evidence from monazite and zircon geochronology, and geochemistry. Precambrian Research 192-195: 16 33.
[18]
Tchameni R., Mezger K., Nsifa E. N. and Pouclet A. (2001). Crustal origin of Early Proterozoic syenites in the Congo Craton (Ntem Complex), South Cameroon. Lithos 57, 23-42.
[19]
Penaye, J., Toteu, S. F., Tchameni, R., Van Schmus, W. R., Tchakounté, J., Ganwa, A., Minyem, D., Nsifa, E. N., (2004). The 2.1 Ga West Central African Belt in Cameroon: extension and evolution. Journal of African Earth Science 39, 159-164.
[20]
Maurizot, P., Abessolo, A., Feybesse J. L., Johan L. P., (1986). Etude de prospection minière du Sud-Ouest Cameroun. Synthèse des travaux de 1978 à 1985. Rapport BRGM 85, 274p.
[21]
Vicat, J.-P., G., Moloto-A-Kenguemba, A. Pouclet (2001). Les granitoïdes de la couverture protérozoïque de la bordure nord du craton du congo (Sud-Est du Cameroun et Sud-Ouest de la république centrafricaine), témoins d’une activité magmatique post-kibarienne à pré-panafricaine. Compte Rendu de l’Académie des Sciences. Paris, Sciences de la Terre et des Planètes/ Earth and Planetary Sciences. 332, 235-242.
[22]
Ganwa, A. A., Urs Stephan Klötzli, Christoph Hauzenberger (2016). Evidence for Archean inheritance in the pre-Panafrican crust of Central Cameroon: Insight from zircon internal structure and LA-MC-ICP-MS U-Pb ages. Journal of African Earth Sciences 120, 12-22.
[23]
Tchakounté Numbem, J., Toteu, S. F., Van Schmus, W. R., Penaye, J., Deloule, E., Mvondo Ondoua, J., Bouyo Houketchang, M., Ganwa, A. A., White, W. M., (2007). Evidence of ca. 1.6-Ga detrital Zircon in the Bafia Group (Cameroon): Implication for the chronostratigraphy of the Pan-African Belt north of the Congo craton. Sciences 339, 132-142.
[24]
Tchakounté, J. A., Eglinger, S., F., Toteu, A., Zeh, C., Nkoumbou, J., Mvondo Ondoa, J., Penaye, M. De Wit, P., Barbey, (2017). The Adamawa-Yadé domain, a piece of Archean crust in the Neoproterozoic Central Orogenic belt (Bafia area, Cameroon). Precambrian Research, vol. 299; pp. 210-229.
[25]
Ntomba, S. M., Ndong, B. F.; Messi O. J. E., Goussi N. F. J., Bisso D., Magnekou T. C. R., Mvondo, O. J., (2016). Phlogopite compositions as indicator of both the geodynamic context of granitoids and the metallogeny aspect in Menve’ele Archean area, north western Congo Craton. Journal of African Earth Sciences, 118, 231 244.
[26]
Van Schmus, W., R., Toteu, S., F., (1992). Where the Congo craton and the São Francisco craton joined during the fusion of Gondwanaland? EOJ. Abstract 7, 25.
[27]
Maurizot, P., A. Feybesse, J. L. Johan et Lecomte P. (1987). Etude et prospection minière du Sud-Ouest Cameroun, Synthèse des travaux de 1978 à 1985. Rapp. BRGM, 85, CMR066, 274p.
[28]
Ludwig KR, (2000). Users manual for Isoplot/ex rev. 2.49: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 1a: 1-56.
[29]
Bottinga, Y., Weill, D. F., (1970). Molar volumes of oxide components Am. J. Sci. 1, 269, 169-182
[30]
Vojtech J., Farrow, C., Vojtech E., Moyen, J. F., (2016). Geochemical Data Toolkit for Windows 282p.
[31]
Harrison, T. M., Grove, M., Lovera, O. M. and Catlos, E. J., (1998). A model for the origin of Himalayan anataxis and inverted metamorphism: Journal of Geophysical Research, vol. 103, pp. 27017-27032.
[32]
Wattson, E., B., (1987). The hole of accessory minerals in granitoid geochemistry. In: Hutton Conference of the origin of granites: Transactions of the royal society of Edinburgh, pp. 209-211.
[33]
Ryerson, F. J., Watson, E. B., (1987). Rutile saturation in magmas: implication for Ti-Nb-Ta depletion in island-arc basalts. Earth and Planetary Science Letters, 86, 2, 4, 225-239.
[34]
Jung, S., and Pfânder J. A. (2007). Source composition and melting temperatures of orogenic granitoids: constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry. European Journal of Mineralogy. Vol. 19: 859-870.
[35]
Barker, F., (1979). Trondhjemite definition, environment and hypotheses of origin. In Barker, F. (Ed). Trondhjemites Dacites and related rocks. Elsevier, Amsterdam, pp. 1-12.
[36]
Barker, F. and Arth, J. G. (1976). Generation of trondhjemite-tonalitic liquids and Archean bimodal trondhjemite-basalts suites. Geology 4, 596 600.
[37]
Rollinson, H., R., (1993). Using geochemical data evolution, presentation interpretation. Pearson Education Limited, London, pp. 108-111.
[38]
Chappell, B., W., White, A., J., R., (2001). Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences. Vol., 48, 489-499.
[39]
Maniar P. D., and Picolli P. M., (1989). Tectonic discrimination of granitoids. Geological Society of American Bulletin. 101, 635-643.
[40]
Martin H., Smithies, R. H., Rapp, R., Moyen, J-F., Champion, D., (2005). An overview of adakite, tonalite-trondhjemite-granodiorite (TTG) and sunakitoid relationships and some implications for crustal evolution. Lithos. 79, 1-24.
[41]
Pearce J. A., Harris, N. B. W., Tindle, A. G. (1984). Trace element discrimination diagrams for tectonic interpretation of granitic rocks. Journal of Petrology. Vol. 25, 956 983.
[42]
Taylor, S. R. & Mc Lennan, S. C. (1985). The continental crust: its composition and evolution. Blackwell Scientific Publications, Oxford 312p.
[43]
Rudnick, R., H., (1995). Making continental crust. Nature, 378, 571-578.
[44]
Clemens, J., D., Stevens, G., (2012). What controls chemical variation in granitic magma? Lithos. Vol., 134, 317-329.
[45]
Weinberg, E., B., Hasalova, P., (2015). Water-fluxed melting of the continental crust: a review. Lithos. Vol., 212, 158-188.
[46]
Miller, C., F., & Mittlefehldt, D., W., (1984). Extreme fractionation in felsic magma chambers; a product of liquid-state diffusion or fractional crystallization? Earth and Planetary Science Letters. Vol. 68, 151-158.
[47]
Rapp, R., P., Xiao, L., Shimizu, N., (2002). Expeerimental constraints on the origin of potassium-rich adakites in eastern China. Acta Petrology Sinica. 18, 293-302 (In Chinese with English abstract).
[48]
Defant, M. J. and Drummond, M. S. (1990). Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662-665.
[49]
Martin H. (1999). Adakitic magmas: modern analogous of Archean granitoids. Lithos. 46 (3), 411-429.
[50]
Zhang, Bo., Zhang, J., Zhong, D., Guo, L., (2009). Strain and kinematic vorticity analysis: An indicator for sinistral transpressional strain-partitioning along the Lancangjiang shear zone, western Yunnan, China. Sci China Ser D-Earth Sci, 52, 5, 602-618.
[51]
Nabatian, G., Ghaderi, M., Neubauer, F., Honarmand M., Liu, X., Dong, Y., Jiang, S., Quadt, A., Bernroide, M., (2014). Petrogenesis of Tarom high-potassic granitoids in the Alborz¬Azerbaïjan belt, Iran: geochemical, U-Pb zircon and Sr-Nd-Pb isotopic constraints. Lithos. 184-187, 32X-345.
[52]
Montel, J., M., (1993). A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chemical Geology. Vol. 110, 127-146.
[53]
Wattson, E., B., & Harrison, M., (1984). Accessory minerals and the geochemical evolution of crustal magmatic systems: a summary and prospectus of experimental approaches. Physics of the Earth and Planetary Interiors. Vol. 35, 19-30.
[54]
Hoskin, P., W., O., Kinny, P., D., Wyborn, D., &Chappell, B., W., (2000). Identifying accessory mineral saturation during differentiation in granitoid magmas: an intergral approach. Journal of Petrology. Vol. 41, 1365-1396.
[55]
Raase, P., (1974). Al and Ti contents of hornblende, indicators of pressure and temperature of regional metamorphism. Contribution of Mineralogy and Petrology, 45: 231-236.
[56]
Otten, M. T., (1984). The origin of brown hornblende in the Artfjället gabbro and doerites. Contribution of Mineralogy and Petrology, 86: 189-199.
[57]
Schreurs, J. (1985). Prograde metamorphism of metapelites, garnet-biotite geothermometry and prograde changes of biotite chemistry in high grade rocks of West Uusima Southwestern Finland. Lithos, 18: 69-82.
[58]
Patiño Douce, A. E., (1993). Titanium substitution in biotite: an empirical model with applications to thermometry, O2 and H2O barometries and consequences for biotite stability. Chemical Geology. Vol. 108, pp. 133 162.
[59]
Stussi, J. M., Cuney, M. (1996). Nature of biotite from alkaline, calc-lkaline and peraluminous magmas by Abdel Fattah, M. Abdel-Rahman: a comment. Journal of Petrology, 37, 1025 1029.
[60]
Henry D. J., C. V. Guidotti and J. A. Thomson, (2005). The Ti-saturation surface for low to medium pressure metapelic biotites: Implications for geothermometry and Ti-substitution mechanisms. American Mineralogist, vol. 90, pp. 316-328.
[61]
Pouclet, A., Tchameni, R., Mezger, K., Vidal, M., Nsifa, E., Shang, C., Penaye, J. 2007. Archaean crustal accretion at the northern border of the Congo Craton (South Cameroon). The charnockite-TTG link. Bull. Soc. géol. Fr., 2007, t. 178, no 5, 331-342.
[62]
Kankeu, B., Greiling, R. O., Nzenti, J. P., (2009). Pan-African strike-slip tectonics in eastern Cameroon-Magnetic fabrics (AMS) and structure in the Lom basin and its gneissic basement. Precambrian Research 174, 258-272.
[63]
Maurizot, P., (2000). Geological map of South-West Cameroon. Edition BRGM, Orleans.
[64]
Steiger RH and Jäger E, (1977). Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36: 359-362.
[65]
Sun, S. S., McDonough W. F., (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A. D. Saunders and M.. Norry, Eds., Magmatism in ocean basins- Geological Society of London Special Publication. 42, 313-345.
[66]
De La Roche H, Leterrier J, Grandeclaude P and Marshal M., (1980). A classification of volcanic and plutonic rocks using R1-R2-diagrams and major elements analyses- its relationships with current nomenclature. Chemical Geology 29: 183-210.
[67]
Altherr, R., Holl, A., Hegner, E., (2000). High potassium calc-alkaline I-type plutonism in the European variscides: Northern vosges (France) and northern schwarzwald (Germany). Lithos 50, 51-73.
[68]
Wang Y J, Fan W M, Zhang Y H, et al. Kinematics and 40Ar/39Ar geochronology of the Gaoligong and Chongshan shear systems, western Yunnan, China: Implications for early Oligocene tectonic extrusion of SE Asia. Tectonophysics, 2006, 418: 235-254.
[69]
Wang E Q, Burchfiel B C. Interpretation of Cenozoic tectonics in the right-lateral accommodation zone between the Ailao Shan shear zone and the Eastern Himalayan Syntaxis. Int Geo Rev, 1997, 39:191-19.
[70]
DePaolo, D. J. (1988). Neodymium isotope geochemistry, An introduction minerals and rocks, vol 20. Springer, Berlin, Heidelberg, New York, 187p.
Browse journals by subject